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Abstract 

In a conventional approach, the mechanical behaviour of a structure subjected to 

seismic or blast waves is treated separately from its surroundings, and in many 

cases, the dynamic coupling effect between multiple structures and the waves 

propagating in the ground is disregarded. However, if many structures are built 

densely in a developed urban area, this dynamic interaction may not become 

negligible. The first purpose of this contribution is to briefly show the effect of 

multiple interactions between waves and surface buildings in a town. The analysis 

is based on a recently developed, fully-coupled rigorous mathematical study, and 

for simplicity, each building in the town is represented by a rigid foundation, a 

mass at the top and an elastic spring that connects the foundation and mass. The 

buildings stand at regular spatial intervals on a linear elastic half-space and are 

subjected to two-dimensional anti-plane vibrations. It is found that the buildings 

in this model significantly interact with each other through the elastic ground and 

the resonant (eigen) frequencies of the collective system (buildings or town) 

become lower than that of a single building with the same rigid foundation. This 

phenomenon may be called the "town effect" or "city effect." Then, secondly, it is 

shown that the actual, unique structural damage pattern caused by the 1976 Friuli, 

Italy, earthquake may better be explained by this "town effect," rather than by 
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investigating the seismic performance of each damaged building individually. The 

results suggest that it may also be possible to evaluate the physical characteristics 

of incident seismic/blast waves "inversely" from the damage patterns induced to 

structures by the waves. 

 

Keywords  Collective behaviour, Earthquake hazard, City effect, Town effect, 

Dynamic interaction. 

 

Abbreviations: Uenishi, Town Effect 
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1  Introduction 

The devastating 2009 L'Aquila earthquake in the mountainous region of central 

Italy has renewed our appreciation of earthquake engineering in light of rock 

mechanics and dynamics (see e.g., INGV QUEST 2009, Uenishi 2009). 

Conventional analyses in engineering seismology, however, usually handle the 

mechanical behaviour of each structure independently, and the interaction 

between structural vibrations and the waves in the ground (rock mass, soil) is 

most often neglected − Although structures, either on the surface or in the ground, 

do exist next to each other in a more developed environment, namely, in a town or 

a city like L'Aquila. Instead, the structure itself is assumed to consist of more 

complex and realistic components and the vibration characteristics are analysed in 

great detail, but at present, it is not so certain that these conventional methods are 

valid for analysing the seismic performance of a group of structures densely built 

in an urban area. It may be difficult to conclude that the dynamic interaction 

between multiple structures and the waves propagating in the ground (structure-

wave-structure interaction) is insignificant. 

 Indeed, one of the historically largest earthquakes in Italy, the 1976 quake 

in the Friuli region, may have possibly posed a question regarding the 

(non)existence of such dynamic coupling structure-wave-structure interaction: A 

Figure 1
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photograph taken in the epicentral region in 1976 (Fig. 1) shows a surprisingly 

"regular" (periodic) damage distribution where each adjacent building has 

experienced completely different mechanical behaviour − One building totally 

collapsed while the next one was almost undamaged, and this alternate "collapsed-

undamaged" pattern is repeated further. It might be easier to explain that the 

"dissimilar but regular" damage distribution is attributed to, say, the strength or 

construction year of each building. However, if the buildings with short separation 

distances are subjected to almost the same (frequency components of) seismic 

waves under very similar geological situations, the structural damage may be, to 

some extent, also comparable. Figure 1 suggests, even when we accept the 

importance of the causes like the fragility of each individual structural component, 

it is not simple to explain, systematically and comprehensively from these 

"plausible" causes, the generation of the clearly alternate damage levels in such a 

short distance. At least, it is worthwhile to try to mechanically describe the 

phenomenon observed in Fig. 1 in a more straightforward way, with possible 

dynamic structure-wave-structure interaction taken into consideration. 

 Although certain research was conducted at an earlier stage, for example, 

on anti-plane vibration of several shear walls on an elastic half-space (Wong and 

Trifunac 1975), more interest in the interaction between multiple structures and 

the ground appeared after the 1985 Michoacan earthquake that had generated 
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severe damage to Mexico City − nine years after the Friuli earthquake. The 

difficulties of classical computational methods in matching the seismic records 

have given the idea that part of the seismic energy transmitted to the buildings 

may be re-transferred back into their neighbourhood through multiple interactions 

between vibrating structures and the waves in ground. Recent simulations based 

on different models representing a city (or town) and various numerical 

techniques (e.g., Green functions, finite elements) seem to support this idea 

(Ghergu and Ionescu 2009): The studies regarding the effect of building vibration 

on ground motion have shown that the vibrations of multiple structures may 

radiate waves into the ground through their foundations (Wirgin and Bard 1996, 

Clouteau and Aubry 2001, Guéguen et al. 2002, Tsogka and Wirgin 2003, Boutin 

and Roussillon 2004, Kham et al. 2006). It has been reported, for example, that 

during the Michoacan earthquake, some anomalously long and strong ground 

motions due to the interaction between urban structures caused considerable 

damage to the developed area. In Mexico City, the mechanical characteristics of 

the alluvial layers and the buildings seem favourable for structure-ground 

coupling and, together with the urban (built) environment of the city, they might 

have resulted in that significant city-scale vibration effect (Kham et al. 2006). The 

investigations performed after that earthquake using several different models of a 

city and numerical techniques include: A two-dimensional anti-plane study to 
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describe the diffraction pattern of waves in the surface layer due to the influence 

of a periodic assembly of blocks (buildings) (Wirgin and Bard 1996); Analysis of 

an idealised two-dimensional city that consists of ten non equally-spaced, non 

equally-sized, homogenised blocks anchored in a soft soil layer overlying a hard 

rock (half-space) and displays strong seismic response inside the blocks (Tsogka 

and Wirgin 2003); and three-dimensional computations utilising boundary 

element method (Clouteau and Aubry 2001). Other research addresses the 

structure-ground interaction theoretically (Kham et al. 2006): The large-scale 

effect of a city is estimated by summing up the contribution from each building 

represented by a single oscillator (Guéguen et al. 2002); and the multiple 

interactions between periodically-located simple oscillators are discussed from a 

"macroscopic" city-scale point of view (Boutin and Roussillon 2004). However, 

precise, more "microscopic" vibration behaviour of each building in a city has not 

been thoroughly identified yet. 

 In the following, first, by utilising a simplified model of a town and the 

mathematical technique originally developed in (Ghergu and Ionescu 2009), a 

fully-coupled elastodynamic analysis will be performed to clarify the mechanical 

effect of multiple interactions between waves and surface buildings in a town. It 

will be shown that, due to the dynamic interaction through (the waves in) the 

ground, the eigenfrequencies of the collective multiple-building system become 
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lower than the resonant frequency of a single building. This shift of 

eigenfrequencies may be called the "town effect" (or "city effect"). Then, the 

generation mechanism of the alternate structural damage levels caused by the 

1976 Friuli earthquake (Fig. 1) will be investigated and it will be shown that the 

damage pattern may have been actually induced by the "town effect." 

 

2  Analytical Basis 

Consider a two-dimensional anti-plane problem of a homogeneous, isotropic 

linear elastic half-space, representing rock mass or soil near the free surface 

(ground). It is supposed, for simplicity, that N buildings are uniformly distributed 

in a town (total length 2lt) located on the surface (y = 0) along the x-axis at −lt < x 

< lt, with 2lb being the width of the rigid foundation of each building located at aj 

< x < bj (= aj + 2lb) and d being equal separation distance (1 ≤ j ≤ N; Fig. 2a). The 

foundation itself has no height. The anti-plane horizontal displacement in the z-

direction, w(x, y, t), satisfies the equation of motion in the half-space 
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where ρ and μ are the mass density and shear modulus of the ground, respectively. 

The rigid and stress-free boundary conditions along the x-axis on y = 0 are given 

by 

w(x, 0, t) = wm0
j(t),   (for rigid foundations; aj < x < bj, 1 ≤ j ≤ N) 

0),0,( =
∂
∂μ tx

y
w ,   (elsewhere)           (2) 

respectively, with wm0
j(t) being the anti-plane horizontal displacement of the 

foundation of the j-th building in the town. Further, assume that each building has 

the same mechanical characteristics and consists of a foundation (mass per unit 

length m0), a mass m1 (again, per unit length) at the top and the elastic spring 

connecting the foundation m0 and mass m1. The elastic spring produces resistant 

force that is proportional to the elastic modulus k and the relative anti-plane 

horizontal displacement of the mass m1 with respect to the foundation m0, i.e., 
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Here, wm1
j(t) is the anti-plane horizontal displacement of the mass at the top of the 

j-th building, and the relations k = 2μblb/h and m1 = 2ρblbh hold, with ρb, μb and h 

being the mass density, shear modulus and height of the building. Due to the 

dynamic interaction mathematically expressed by Eqs (1)-(3), the displacement 
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amplitude of every foundation (or mass at the top) may become different from 

each other even for a single vibration frequency of the town (Fig. 2b). 

 In fact, a rigorous eigenvalue analysis briefly summarised in Appendix 

indicates such behaviour of buildings in the town. The eigenfrequencies of the 

vibrations of the town consisting of N identical buildings may be obtained by 

analysing the eigenvalues and eigenvectors of the N × N matrix T shown in Eq. (7) 

in Appendix (and then solving Eq. (6)). At this point, it may be convenient to 

introduce the normalised frequency ξ for the following discussion 

Sb cl /ω=ξ ,             (4) 

where ω is the angular frequency of vibration and equal to 2πf (f: frequency), and 

cS (= ρμ / ) is the shear wave speed of the linear elastic ground. 

 In Fig. 3, the normalised eigenfrequencies of all vibration modes are 

shown for a town of seven buildings having the identical mechanical 

characteristics (N = 7). In generating this figure (and also Fig. 4 below), it is 

assumed that d/lb = 0.4, h/lb = 2, m1/m0 = 1.5, ρb/ρ = 0.1 and (cS)b/cS = 1.5, as 

suggested by (Ghergu and Ionescu 2009) for European towns, with (cS)b 

(= bb ρμ / ) being the shear wave speed in the buildings. With these geometrical 

and mechanical properties, the normalised eigenfrequencies for the first (k = 1), 

fourth (k = 4) and seventh (k = 7) vibration modes of the collective behaviour of 

the buildings (town) are found to be ξk ≡ 2πfk lb/cS = 1.071, 0.839 and 0.780, 

Figure 3
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respectively. As seen in Fig. 3, the eigenfrequency ξk of each vibration mode [1 ≤ 

k ≤ N (= 7)] is smaller than that of a single building with the same foundation ξ0 

(= 1.186), which shows the theoretical existence of the "town effect." Note also in 

Fig. 3 that the normalised eigenfrequency ξk lies in the range between the two 

eigenfrequencies ξ0 [for a single m1-k-m0 (mass-spring-foundation) system] and 

ξ∞ [= 0.75; a single (or an N-) m1-k (mass-spring) system on a rigid half-space], as 

expressed by Eq. (9) in Appendix. 

 Figure 4 illustrates the associated eigenvector or distribution of the 

normalised displacement amplitudes of the foundations for the k-th vibration 

mode of the town: αk
j (indicated by black rectangles) and |αk

j| (shown by white 

rectangles where αk
j is negative) for the identical town (N = 7, with j being the 

building number, 1 ≤ j ≤ N and 1 ≤ k ≤ N, see Appendix). Note that, if normalised, 

the distribution of the displacement amplitudes of the masses m1 at the top for the 

k-th mode is exactly the same as that for the foundations m0 [refer to the 

expressions for wm0
j(t) and wm1

j(t) in Appendix]. Moreover, in this harmonic 

analysis, the normalised distributions of displacements are equivalent to those of 

velocities and accelerations. Therefore, if each building can be assumed to have 

(more or less) the same mechanical properties and the induced structural damage 

level is proportional to the (maximum of the absolute value of) displacement, 

velocity or acceleration experienced (at the foundation or the mass at the top), 

Figure 4
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these diagrams can be compared to the ones showing the damage levels of 

buildings or photographs like Fig. 1. Figure 4a pertains to the first vibration mode 

(k = 1) where all displacements are in phase and the building in the middle of the 

town, number 4, may be subjected to the severest vibration and therefore more 

damage is expected to this building than to the others. This distribution is very 

similar to that for the seventh mode (k = 7, Fig. 4g), but only every second 

building moves in phase and the vibration is more "out-of-phase" in Fig. 4g. In the 

second mode (k = 2, Fig. 4b) the same building 4 in the middle experiences no 

dynamic impact, and like in the sixth mode (k = 6, Fig. 4f), specific buildings (2 

and 6) are subjected to stronger vibrations. The third mode (k = 3, Fig. 4c) shows 

again the displacement of the building 4 is the largest one and also in the similar 

fifth mode (k = 5) every third building may have a larger displacement. Figures 4d 

indicates that every second building (j = 1, 3, 5, 7) is under much stronger 

vibration in the fourth mode (k = 4). Thus, Fig. 4, together with Fig. 3, clearly 

demonstrates that slight change in vibration frequencies can induce totally 

different dynamic behaviour of the town, which may not be systematically, or in a 

unified way, explained through conventional analyses handling each individual 

building separately. 

 Figures 3 and 4 show a "peculiar" feature in the sense that a smaller 

eigenfrequency seems to correspond to a "higher" (more "out-of-phase") mode of 
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vibration, but as stated in detail in Discussion, this "reverse" order of eigenvectors 

may become also "normal" (i.e., a higher eigenfrequency corresponds to a 

"higher" vibration mode of the town), depending on the combination of 

geometrical and mechanical properties actually employed in the analysis. 

 

3.  Possible Example of the Seismic "Town Effect" 

3.1.  The 1976 Friuli, Italy, Earthquake 

Here, based on the analytical results summarised above, the generation 

mechanism of seismic damage pattern observed in the Friuli region in 1976 (Fig. 

1) will be studied. 

 The main shock (Richter magnitude ML = 6.5) occurred on 6 May 1976, 

with the epicentre located about 25 km north of the city of Udine and the focal 

depth being some 10 km. The region of Friuli is located in the eastern sector of 

the Southern Alps where the orogenesis is related to the convergence of European 

and Adriatic plates. The main shock was preceded by an ML = 4.5 foreshock, and 

followed by a large number of aftershocks, with the largest ones on 15 September 

1976 (ML = 6.1 and 5.8) (Cipar 1980, Zollo et al. 1997). The spectral response 

estimated from the main shock and aftershocks of this Friuli 1976-1977 



14 

earthquake sequence for the TLM1 (Tolmezzo-Ambiesta dam) accelerograph site 

at the top of a calcareous hill shows the dominant (peak) frequencies fd of 

observed seismic waves near the epicentre to be about 2, 3.8, and 6-8 Hz. The 

estimation is based on four different methods: spectral-ratio-to-reference-site; 

generalised inversion; median response spectra predicted for a rock soil by 

European attenuation relations; and receiver-function technique (see Barnaba et al. 

2007). 

 Figure 1 suggests, if we can assume the number of buildings in the 

affected "town" was seven and, again, if all buildings there had (approximately) 

the same mechanical properties and the damage level is proportional to the 

maximum acceleration (velocity or displacement) of each building, the town 

might have been collectively under the fourth vibration mode during the 

earthquake (compare Fig. 1 with 4d: Every second building may totally collapse 

under much stronger vibrations). If the observed values, the shear wave speed of 

the ground cS = 225 m/s [Based on the cS vertical profile defined by a shallow 

seismic refraction survey at TLM1 in 1977 (Barnaba et al. 2007)] and the length 

of each building 2lb = 16 m (height h = 8 m), as well as the same geometrical and 

mechanical properties as in the last chapter, are employed, then, based on the 

analytical results, the original eigenfrequency of a single building with a rigid 

foundation may be evaluated approximately as f0 = ξ0cS/(2πlb) = 5.3 Hz. This 



15 

resonant frequency, in the typical natural frequency range of short reinforced 

concrete buildings, may be too high compared with the seismologically estimated 

dominant frequencies fd = 2 and 3.8 Hz (and lower than the other fd = 6-8 Hz), and 

it does not seem straightforward to explain the generation of damage pattern in 

Fig. 1 using this "conventional" resonant frequency for a single building. However, 

if the buildings in the town are treated collectively and the normalised 

eigenfrequencies ξk associated with the "town effect" are used, the dimensional 

eigenfrequencies fk = ξkcS/(2πlb) become approximately 4.8 Hz (first mode, k = 1), 

3.8 Hz (fourth mode, k = 4), or 3.5 Hz (seventh mode, k = 7), respectively. These 

resonant frequencies, possibly causing serious damage only to certain buildings in 

the town, are lower than the original eigenfrequency of a single building f0. One of 

the dominant frequencies fd evaluated from the observations (3.8 Hz) lies in this 

range of "collective" eigenfrequencies fk, and it is well comparable to that of the 

fourth vibration mode f4, as expected from Figs. 1 and 4d. The other dominant 

frequencies (2 and 6-8 Hz) are either too low or too high for the resonance of the 

town or a single building. As stated earlier, slight difference in dominant wave 

frequency component gives totally dissimilar damage patterns, especially in the 

middle section of the town, and there are still many unknown or unconsidered 

factors in the model, but the present study may have shown one possible real 

example of the "town effect" and it also suggests that the physical characteristics 
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of incident seismic (or blast) waves may be "inversely" evaluated from the 

structural damage patterns induced by the waves. 

 

3.2.  Discussion 

The dynamic structure-wave-structure interaction has been studied and its crucial 

effect on the collective mechanical behaviour of a group of surface buildings 

(town) has been addressed, but as stated above, in Figs. 3 and 4 a smaller 

eigenfrequency is corresponding to a "higher" mode of vibration. Preliminary 

study on the effect of building height (h/lb) and separation distance between each 

foundation (d/lb) shows, besides clearly demonstrating the existence of the "town 

effect" again (e.g., for larger h/lb), the order of eigenvectors may become also 

"normal": For example, if the same geometrical and mechanical properties except 

for longer separation distance d/lb = 2 (i.e., the separation distance d and the 

building width 2lb are the same) are used, a higher eigenfrequency is associated 

with a "higher" vibration mode of the town. This "reverse" or "normal" order of 

vibration modes (eigenvectors) is dependent on the combination of geometrical / 

mechanical properties used in the computations and it may possibly be attributed 

to the "fluctuating" nature of the Hankel and Bessel functions of the first kind of 

order zero, i.e., (real and imaginary parts of) H0
(1)(x) and J0(x), which appear in 
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the analysis and take both positive and negative values depending on x: Similar 

"fluctuating" behaviour due to the introduction of Hankel and Bessel functions 

may be observed in the wave interaction problems in general, e.g., in the classical 

analysis of dynamic stress concentrations around a circular cavity in an infinitely 

extended, thin elastic plate during passage of plane longitudinal waves (Pao 1962) 

and also in the study of the seismic performance of dual tunnels, typically two 

tunnels running in parallel, at various depths (Uenishi and Sakurai 2008). The 

important and consistent points here are that, regardless of the order of 

eigenvectors, the distributions of the (absolute values of) displacement amplitudes, 

such as shown by the black and white rectangles for |αk
j| in Fig. 4, are rather 

"symmetric," i.e., those of the k-th and (N + 1 − k)-th vibration modes are very 

similar (1 ≤ k ≤ N), and the order of eigenvectors have actually no effect in the 

interpretation of the results, and that the "town effect" may induce stronger 

vibrations only to specific buildings in the town at lower frequencies than 

expected from conventional analyses. 

 This study clearly shows that, in analysing dynamic interaction between 

structures and the deformable ground, not only structural vibrations but also wave 

propagation in the ground should be taken into account. As seen in Appendix, the 

complexity of fully-coupled dynamic analyses requires cumbersome calculations 

that tend to be avoided in many theoretical and numerical studies. However, it 
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should be noted, for instance, that even when we perform some fancy laboratory 

or numerical experiments using real- or small-scale structures built directly on a 

shaking table that is subjected to "realistic" and "observed" seismic vibrations, it 

might be hard to correctly interpret the data obtained by such experiments as long 

as the shaking table is rigid and the dynamic structure-wave-structure interaction 

is most likely excluded. In these experiments, we might be able to only obtain 

some results equivalent to ξ0 (higher frequencies for a single building) in our 

present model. 

 The purpose of the present contribution, however, is not to negate the 

important results obtained by conventional analyses of engineering seismology. 

There are certain limitations in the present model: the effect of the amplitude and 

duration content of the dynamic motion at a site, as well as that of rotation and 

vertical movement of the foundation of the building is neglected. Furthermore, the 

foundation itself is assumed to be rigid without any torsion, and no damper (or 

similar mechanical models) is incorporated. In the further analysis, not only the 

exact information about each building (e.g., type, fragility, construction year and 

code, etc.) but also more precise geological and topographical features should be 

taken into consideration, too. For example, the damage pattern in the Friuli region 

may be generated also by a standing wave with a nodal or reflection point at the 

base of the mountain (H.P. Rossmanith, private communication, 2010): All the 
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buildings located at the vibration maxima were destroyed while those located at 

the nodal points remained more or less intact. Or, there might have been some 

wave focusing phenomena induced by the local geological conditions. Stratified 

layers may induce Love waves instead of anti-plane shear waves, and Rayleigh 

waves with dispersion may become influential near the free surface (Uenishi 

2010). However, a simple mass-elastic column system may well explain the 

collapse of an underground station in Kobe caused by the 1995 Hyogo-ken Nanbu 

earthquake (Uenishi and Sakurai 2000), and at least the damage distribution in Fig. 

1 may be explained in a constructive way with the current simplified model. 

Hence, it may be concluded that the analysis does indicate the importance of 

analysing collective behaviour of a town or a structural complex. 

 

4.  Conclusions 

It has been shown that the collective mechanical behaviour of a group of 

structures subjected to anti-plane horizontal displacements may be different from 

the ones expected through conventional seismic analyses. As an example, the 

generation mechanism of the unique structural damage distribution in the Friuli 

region observed in 1976 has been studied, and it has been suggested that the 

structures actually may have shown the dynamic collective behaviour called the 
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"town effect" or "city effect." The model in this study is indeed quite simplified, 

but nonetheless, it may still hold the fundamental characteristics that will play a 

crucial role in understanding the seismic performance of a group of structures in 

urbanised areas. In such areas around the world, the number of skyscrapers, often 

standing close to each other with comparable heights and mechanical properties, 

is increasing. The results of the present study may be of use in analysing the 

dynamic collective performance of such tall buildings on the surface. Also, in the 

ground, complex structures like dual tunnels are continuously being constructed, 

and therefore, the "town effect" in rock mass or soil should be investigated. 

 

Appendix: Mathematical Background 

In this Appendix, the mathematical treatment of the elastodynamic problem in 

Chapter 2 is briefly described. Utilising the theory of the single layer potential and 

taking the effect of the edges of foundations into account, the harmonic solution 

that satisfies Eq. (1) and the outgoing Sommerfeld radiation condition at infinity 

may be expressed in a general form as (Ghergu and Ionescu 2009) 
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where H0
(1)(x) is the Hankel function of the first kind of order zero, and φ(x) is a 

continuous function on aj < x < bj, to be determined by the boundary conditions. 
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Upon modifications and corrections of the method (and results) presented in 

(Ghergu and Ionescu 2009), the boundary conditions posed by the rigid 

foundations of the buildings (2) and the mass-spring-foundation system (3) read 
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to be satisfied for the k-th vibration mode of the town (1 ≤ k ≤ N) at ξ = ξk (> 0), 

with τk(ξ) (τ1 ≤ τ2 ≤ ... ≤ τN) being the eigenvalues of the N × N matrix T that is 

associated with the definite integral in Eq. (3) and expressed as 
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))()((

))()(( 0
0

qkpj
qkpj

xgxgJ
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   ))]2/(1arcsin())2/(1[arcsin( 1 MxMx qq +−+⋅ − ,   (for M + 1 ≤ q ≤ 2M) 

(8) 

for 1 ≤ j ≤ N, 1 ≤ k ≤ N and 1 ≤ p ≤ 2M, with gj(u) = [aj + bj − (aj − bj) u]/(2lb), 

J0(x) being the Bessel function of the first kind of order zero, A0(x) = i H0
(1)(x) / 4 

+ J0(x) ln(x/2) / (2π) if x ≠ 0 and (iπ − 2γ)/(4π) if x = 0, and finally, γ is the Euler-

Mascheroni constant (γ = 0.57721566...). In obtaining Eq. (8), J0, A0 and φ are 

approximated as constant functions on each interval ))2/(1( 1 Mxgl pjb +−  < x < 

))2/(1( Mxgl pjb +  along the rigid foundation of the j-th building (1 ≤ j ≤ N, 1 ≤ 

p ≤ 2M). This way of discretisation gives fast convergence of the calculation, and 

with relatively smaller M precise results may be obtained (Ghergu and Ionescu 

2009). In the calculations in this study, M = 100 is used. 

 From Eq. (6), the normalised eigenfrequency ξk [or fk = ξkcS/(2πlb) in a 

dimensional form] associated with the k-th vibration mode of the town is obtained 

through the eigenvalue τk(ξk). Note that ξk is controlled not only by m1/m0, ρb/ρ 

and (cS)b/cS but also implicitly by d/lb, h/lb and lt/lb (or N) through the function gj, 

i.e., aj = −lt + (2lb + d) (j − 1) and lt = bN = aN + 2lb. The normalised eigenvectors 

αk
j associated with the matrix Tj,k(ξ = ξk) and its eigenvalue τk(ξk) give the 

normalised displacement amplitudes of the k-th vibration mode of the foundation j 
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as wm0
j(t) = αk

j eiωt (and wm1
j(t) = αk

j/{1 − ξk
2(h/lb)2[cS/(cS)b]2} eiωt for the mass at 

the top), and then the function φ for that vibration mode is obtained in a 

discretised form as ⎥
⎦

⎤
⎢
⎣

⎡
α=φ ∑∑

= =

−
−+−+

N

l

M

q

k
llMqjMpMx

1

2

1

1
)1(2),1(2Re)(  for 

))2/(1( 1 Mxgl pjb +−  < x < ))2/(1( Mxgl pjb +  (again, 1 ≤ j ≤ N, 1 ≤ p ≤ 2M), 

and the displacement in the homogeneous, isotropic linear elastic half-space w(x, 

y, t) may be calculated using Eq. (5) for the k-th vibration mode and normalised 

eigenvectors αk
j. 

 Equation (6) implies that 01 /1)/](/)[( mmhlcc bSbS +=ξ  when there is 

no structure-wave-structure interaction [i.e., τk(ξ) = 0 and hence the 

eigenfrequency for a single m1-k-m0 (mass-spring-foundation) system] and 

)/](/)[( hlcc bSbS=ξ  when 1/τk(ξ) → 0 [normalised eigenfrequency for a single 

(or equivalently an N-) m1-k (mass-spring) system on top of a rigid half-space 

where no displacement is allowed and the structure-wave-structure interaction is 

"infinite"]. That is, the eigenfrequencies ξk of the N building system lie in the 

range 

)(1)(...)()(
0

0

1
11 ξ≡+<ξ≤≤ξ≤ξ<ξ≡ −∞ m

m
h
l

c
c

h
l

c
c b

S

bS
NN

b

S

bS .      (9) 

It should be noted that the first vibration mode corresponding to the smallest 

eigenvalue τ1(ξ1) gives the highest eigenfrequency ξ1 (f1), and vice versa. In Figs 

3 and 4, a lower eigenfrequency is related to more complex "out-of-phase" 
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eigenvectors of the town. The alternate feature mentioned in Discussion ("reverse" 

or "normal" order of vibration modes) is not recognised in (Ghergu and Ionescu 

2009), where the eigenfrequencies are calculated for the cases of N = 1, 3 and 21 

buildings in a town with the same geometrical and mechanical properties as in this 

study but the results are inversely presented, i.e., their eigenfrequency for the k-th 

vibration mode is actually that for the (N + 1 − k)-th mode (1 ≤ k ≤ N). 
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Figure Captions 

 

Fig. 1  Structural damage caused by the 1976 Friuli, Italy, earthquake. 

Astonishingly, each adjacent building has shown fully alternate mechanical 

behaviour − totally collapsed, almost undamaged, totally collapsed, almost 

undamaged, ... This structural damage pattern might not be systematically 

explained by conventional seismic analyses that usually treat each building 

separately (Photograph courtesy of Prof. H.P. Rossmanith in Vienna). 

 

Fig. 2  The "town model" employed in the analysis (modified after Ghergu and 

Ionescu 2009): (a) N buildings are uniformly distributed on the flat surface of a 

linear elastic half-space (rock or soil), with separation distance d. The total length 

of the town is 2lt, and each building j (1 ≤ j ≤ N) is represented by a rigid 

foundation (having width 2lb but no height), a mass at the top and a linear elastic 

spring that connects the mass and foundation; and (b) Due to dynamic interaction 

between the buildings and the anti-plane elastic waves in the ground, each 

foundation (and mass at the top) may behave mechanically differently even for a 

single vibration frequency of the town. 
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Fig. 3  Normalised eigenfrequncy ξk (≡ 2πfk lb/cS) related to the vibration mode k 

[1 ≤ k ≤ N (= 7)] of a town that consists of seven identical buildings on a linear 

elastic half-space [d/lb = 0.4, h/lb = 2, m1/m0 = 1.5, ρb/ρ = 0.1 and (cS)b/cS = 1.5]. 

 

Fig. 4  For the same town with seven buildings, this figure shows the normalised 

displacement amplitude of the j-th foundation for the vibration mode k 

[eigenvectors αk
j (black rectangles) and |αk

j| (white rectangles where |αk
j| = −αk

j), 

with 1 ≤ j ≤ N and 1 ≤ k ≤ N (= 7)]: (a) First; (b) second; (c) third; (d) fourth; (e) 

fifth; (f) sixth; and the (g) seventh mode. 
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Fig. 1 (smaller image for the Web version) 

 



 30

(a) 

 

d

y

z 2lb

2lt

xFoundation 
m0 

Mass 
m1 

1 Nj

 

 

(b) 

 

x

y 

z

1 

N
j

 

 

Fig. 2 



 31

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1 2 3 4 5 6 7
Vibration mode

Ei
ge

nf
re

qu
en

cy

 

 

Fig. 3 

ξ0 

ξ∞ 



 32

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1 2 3 4 5 6 7

Building number

Am
pl

itu
de

 

(a) 

 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1 2 3 4 5 6 7

Building number

Am
pl

itu
de

 

(b) 

Fig. 4 
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Fig. 4 (continued) 
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Fig. 4 (continued) 
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Fig. 4 (continued) 

 


