
 1

 

 

Stability of Dynamically Propagating Cracks in Brittle Materials 

 

by 

K. Uenishi 

Division of Engineering and Applied Sciences and Department of Earth and Planetary Sciences 

Harvard University 

Cambridge, Massachusetts, USA 

and 

H.P. Rossmanith 

Institute of Mechanics, Vienna University of Technology 

Vienna, Austria 

 

 

 

Acta Mechanica, No.156(3-4), pp.179-192, 2002. 

 



 2 

Abstract 

Dynamic crack propagation and bifurcation phenomena are investigated analytically by utilizing 

the strain energy density fracture criterion in the framework of catastrophe theory. The effect of 

biaxial stress, loading imperfections (mixed-mode loading), Poisson’s ratio, state of stress as 

well as crack tip propagation speed on the crack path directional stability is analyzed. Special 

crack path stability charts for (un)stably propagating cracks are obtained and their connection 

with the experimentally recorded crack tip stress field is addressed. It is shown that slight 

change of the normal stress acting parallel to a crack at its tip (crack-parallel stress) may be able 

to affect the crack surface roughening and/or branching velocity considerably. It is also 

indicated that under small tensile crack-parallel stress, the crack propagation is stable only when 

the crack propagation speed is less than about 30% of the relevant shear wave speed. The crack 

becomes unstable and its surfaces roughen severely at a higher speed, and the crack bifurcates at 

the highest propagation speed, some 45% of the shear wave speed. It is suggested that 

superimposing mode-II (shear) loading will enhance the dynamic crack path stability while 

increasing crack propagation speed will reduce the stability of crack propagation. It is expected 

that under compressive crack-parallel stress, no crack surface roughening will occur before the 

crack stably bifurcates. 

 

 

Keywords: crack branching and bifurcation, dynamic fracture, crack propagation, crack 

mechanics, energy methods, stability and bifurcation, catastrophe theory, loading imperfection. 

 



 3 

1. Introduction 

The investigation into the fundamental mechanical behavior of cracks prior and subsequent to a 

critical point of stability has been of great importance in understanding the rupture mechanism 

of brittle solids, and therefore it has been the subject of numerous researches (see e.g. [1], [2]). 

The theoretical analyses of a crack extending on a plane have shown that under typical mode-I 

and II remote loading conditions the limiting propagation speed of a crack tip c is the Rayleigh 

wave speed, cR, of the material. However, laboratory experiments and observations suggest that 

when a crack extends in brittle materials under suitable stress conditions and its velocity exceeds 

a certain limit, it oscillates (surface roughening) and subsequently divides into two or more 

branches. For a mode-I crack in brittle amorphous solids (glass, PMMA), the crack propagation 

speed c has an upper limit of order 0.5-0.6cS (0.55-0.65cR). Here, cS is the relevant shear wave 

speed in that solid. The fracture surface is mirror-smooth only for c < 0.27-0.36cS (0.3-0.4cR). 

The crack surface roughens severely at higher speeds and the crack bifurcates at the highest 

speeds [3]-[6]. 

 The attempts to explain the observed low limiting speeds and the crack surface 

roughening have started with the work by Yoffe [7]. She solved the elastodynamic equations for 

a running crack of finite length, showing the dependency of the structure of the near tip singular 

field on the crack propagation speed, c, and found that, when c > 0.6cS (0.65cR), the 

circumferential normal stress at a fixed small radius r = r0 from the tip (within the singularity-

dominated area) reaches a maximum at an angle θ ≠ 0 with respect to the current crack growth 

direction. This result may give a plausible explanation of limiting speeds and macroscopic 

branching, but does not explain the surface roughening that can occur at much smaller speeds 

[6]. By assuming sudden change of rupture speed just before and just after bifurcation, Freund 

[8] showed that the limiting speed for a mode-I crack is c ≈ 0.45cS (0.5cR). However, even if the 
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change of speed of a fracture before and after branching is properly incorporated, it seems 

unlikely that the onset of crack surface roughening at speeds in the range c ≈ 0.27-0.36cS (0.3-

0.4cR) can be explained by a branching instability at a crack tip [6]. 

 An alternative approach to the crack stability problem may be based on the analysis of 

crack path directional stability. Close observations into experimentally recorded wave patterns 

indicate that the characteristics of crack propagation depend essentially on and may be 

controlled by the loading conditions that are basically influenced by the geometrical 

configuration of the specimen [1], [9]-[12], and it has been noticed that the normal uniform 

stress acting parallel to a crack at its tip (crack-parallel stress) considerably affects the path 

stability of an extending crack. Analytically, using the symmetry condition of vanishing mode-II 

stress intensity factor KII = 0 for crack growth direction, Melin [13]-[14] considered the 

directional stability of a static crack subjected to biaxial remote loading ∞σ=σ xx  (crack-parallel 

stress) and ∞σ=σ yy  (crack-normal stress), and showed that the directional instability occurs for 

∞∞ σσ yx / > 1, but, irrespective of the crack length, the crack edges actually move away from the 

original crack plane if ∞∞ σσ yx / ≥ 1 – π/4 ≈ 0.2146. Therefore, the question of crack directional 

stability cannot be answered by considering only a crack edge vicinity, for example by analyzing 

the effect of an initial disturbance near the edge of a semi-infinite crack, using the stability 

criterion that the crack edge should move towards the original crack plane like in [15]: the 

positive T-stress (which for a mode-I crack in a large plate implies that ∞∞ σσ yx / > 1) cannot be a 

criterion for directional stability [1]. This suggests that cracking is not a purely local 

phenomenon and a more global criterion should be used. It should also be noted that although 

the criteria for the direction of crack growth [16]: 

KI(θ) = maximum   or   KII(θ) = 0,                                            (1) 
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especially the second criterion, have been extensively used in numerical schemes, these criteria 

are equivalent only for a crack propagating under smoothly changing direction. For a stationary 

crack subjected to mixed mode loading (KII ≠ 0), the angle that maximizes KI differs from the 

one for KII = 0. The simple symmetry condition KII = 0 is, in general, less reliable when small 

scale yielding cannot be assumed [1], for instance, around the tips of a dynamically propagating 

crack where excessively large fracture process zones and resulting crack division may be 

expected. 

 Therefore, in this study, the strain energy density fracture criterion, together with the 

catastrophe theory, will be employed to analyze the dynamic crack path stability and branching 

under mixed-mode conditions. The reasons for using the strain energy density criterion are: (1) 

it is simple to be applied; (2) the core region (a certain area around a crack tip where the 

singular stresses would occur) is excluded, and more globally, the exterior (but very close) field 

is considered; and (3) the analytical results often match the experimental findings, especially 

when cracks are under mixed-mode loading. There is a reference radius that deserves a physical 

interpretation in this criterion. However, such reference radii appear even when we employ the 

stress intensity factor K-based criteria (including the maximum tensile stress or shear stress 

criterion). 

 

 

2. The State of Stress around a Crack Tip and the Strain Energy Density 

2.1. Analytical basis 

 Consider the arbitrary motion of a crack tip in the ξ,η-plane subjected to a general 

exterior stress field except that the crack speed is always less than the characteristic Rayleigh 

wave velocity, cR. The local Cartesian (x, y) as well as a local polar coordinate system (r, θ) are 
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attached with the crack tip P(ξ, η) such that the crack velocity vector is parallel to the x-

direction which also coincides with θ = 0 (see Fig.1). 

 The plane elastodynamic crack tip stress field for running cracks can be represented in 

the form [2], [17]-[18]: 
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In the following analysis, all regular stress fields [incorporated in O(1)] will be neglected. 

 For the investigation of the multi-parametric problems of crack propagation within the 

framework of the catastrophe theory, the elastic strain energy density W of the stress field 

around a crack tip will be employed as a potential function. For plane problems the strain energy 

density W may be expressed as the sum of an isochromatic and an isopachic contribution: 

W Im= + −1

16
8 12 2

µ
τ κ[ ( ) ] ,                                              (5) 

where µ is shear modulus, τm is maximum shear stress, I = σx + σy (sum of normal stresses), 

κ=3−4ν for plane strain and κ=(3−ν)/(1+ν) for plane stress, and ν is Poisson’s ratio. The form 

of equ.(5) implies a strong correlation between the shapes of equi-strain-energy-density lines 

and isochromatics and isopachics observed in laboratory experiments. 

 With the abbreviations: 

F f f m f f

G f mf

H f f m f f

I I II II

I II

I I II II

= − + −
= +

= + + +









22 11 22 11

12 12

22 11 22 11

2

( )

( )

( )

 ,

 ,

 ,

                                           (6) 

where m = KII / KI, the expression for the strain energy density W takes the form 
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Here the new variable 0
* rrα=α  with I02 Krx πσ=α ∞  has been introduced. The quantity 

r0 represents a reference radius [9]. 
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2.2. The effect of the crack-parallel stress observed in laboratory experiments 

 The effect of the crack-parallel stress on crack path stability can be seen clearly in 

laboratory experiments using a Double-Cantilever-Beam (DCB) specimen [Fig.2(a)] and a 

Single-Edge-Notched (SEN) specimen [Fig.2(b)]. It is expected that a DCB specimen will give 

positive (tensile) crack-parallel stress while an SEN specimen will render negative (compressive) 

normal stress acting parallel to the crack surface. Dynamic photoelasticity is utilized to 

experimentally record the isochromatic crack tip fringe patterns (lines of constant maximum 

shear stress, τm). 

 The photographs in Figs.3 and 4 show the isochromatic fringe patterns associated with a 

dynamically propagating crack (c/cS = 0.2) in Homalite 100 subjected to mode-I [(a) in each 

figure] and mixed-mode [(d) in each figure] loading conditions in a DCB specimen (Fig.3) and 

in an SEN specimen (Fig.4). Figure 3(a) pertains to the case where the crack, under pure mode-

I loading, is subjected to tensile crack-parallel stress, and clearly shows, even under a relatively 

small crack tip speed c/cS = 0.2, an unstable crack path behind the tip. However, if a loading 

imperfection, or mode-II shear loading, is superimposed to the crack, then, as seen in Fig.3(d), 

the crack propagates stably and smoothly. The photographs in Fig.3 show that adding mode-II 

loading will enhance the stability of the dynamic crack path. The corresponding isochromatic 

fringe patterns, generated analytically using the formulae described above, are depicted in 

Figs.3(b) and (e), and equi-strain-energy-density lines are shown in Figs.3(c) and (f) for the 

same fracture test specimen, DCB. The local minima and maxima directions related to the 

maximum shear stress and the strain energy density are indicated by the markers (dots and short 

lines) in these figures. 

 Figure 4(a) and (d) show that under compressive crack-parallel stress, the crack can 

propagate stably, without surface roughening. The corresponding, analytically obtained 

isochromatic fringe patterns and equi-strain-energy-density lines are indicated also in Fig.4. The 
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markers (dots and short lines) in these figures show the directions of local minima and maxima. 

Notice the strong effect of the crack-parallel stress σx
∞ (or α, α*) onto the tilt angle of 

isochromatic loops [backward leaning loops for a DCB specimen (Fig.3), forward leaning loops 

for an SEN specimen (Fig.4)] and also onto the shape of equi-strain-energy-density lines. 

Comparison of Fig.4(a) with Fig.3(a) suggests that the normal stress acting parallel to a crack at 

its tip may be able to affect the crack stability: negative (compressive) crack-parallel stress 

enhances the stability of a dynamically propagating crack while positive (tensile) crack-parallel 

stress tends to reduce the crack stability and may induce crack surface roughening. 

 

3. Crack Path Directional Stability and Crack Branching 

The stability of crack path is discussed analytically in more detail using the strain energy density 

fracture criterion. This criterion is based on the exploration of the equi-strain-energy-density line 

pattern around the crack tip. Application of the catastrophe theory [19] in connection with the 

principle of crack propagation along the minima of the elastic strain energy density allows for 

the construction of stability charts on the basis of the extreme values of the strain energy density 

[9]-[11]: 

∂W/∂θ = 0,   for r = rn and θ = θn                                            (8) 

Combination of equ.(7) with the condition (8) renders the governing equation for the general 

mixed-mode stability chart: 
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Here, ( )• = ∂( )/∂θ. A crack is directionally stable provided that ∂2W/∂θ2 > 0; if ∂2W/∂θ2 < 0, 

the local crack development will be unstable [20]. The boundary between stability and instability 

is described by: 

∂2W/∂θ2 = 0.                                                          (10) 
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The extreme values can be readily determined from stability charts (the normalized crack-

parallel stress α* versus the angle θn) as shown in Figs.5-9. The evolution of the stability curves 

from the symmetric Mode-I case to the non-symmetric case of general mixed-mode is depicted 

in Fig.5 for a static crack under plane strain conditions with Poisson’s ratio, ν = 0.25. In the 

figure, thick (fine) lines correspond to stable (unstable) crack propagation, respectively. Notice 

that the Mode-II contribution to mixed-mode (m = KII/KI) is considered as a small disturbance to 

the Mode-I pattern, and that the resulting stability curves are similar to curves obtained in the 

analysis of imperfection sensitive elastic structures (see e.g. [19]). When m = 0 (Mode-I 

loading), only the section α* ≤ 1/6 of the axis θn = 0° represents minima of the strain energy 

density which gives rise to directionally stable crack extension. However, when sufficiently large 

imperfect (shear mode-II) loading is added (e.g. m = 0.25), then the stability curves change its 

shape considerably [Fig.5(c)], indicating that under the action of sufficiently large imperfect 

loading, a crack can stably propagate regardless of the sign and magnitude of the uniform 

regular stress acting parallel to the crack line. In other words, adding mode-II loading will 

enhance the crack path stability. 

 The influence of the state of stress and varying Poisson’s ratio onto the stability charts 

for a static Mode-I crack is shown in Fig.6. Figures 6(a)-(c) pertain to the plane strain 

conditions while the other figures (d)-(f) are related to the conditions of plane stress. The 

figures indicate that increasing Poisson’s ratio will slightly enhance the directional stability of a 

crack and that plane strain conditions render more stable crack extension than plane stress 

conditions. 

 The perspective Lagrangian-type graphical representation, Fig.7, shows the effect of 

crack tip velocity and crack-parallel stress on mode-I crack path stability. In the figure, the 

coordinate axes denote the crack tip velocity normalized by the relevant shear wave speed, c/cS, 
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the angle θn with respect to the crack line and the normalized crack-parallel stress α*. In Fig.8, 

the projection of the curve of degenerate critical points on the α*, c/cS-plane is depicted for 

Mode-I stress loading. Figures 7, 8 and the dynamic stability diagrams for mode-I cracks, 

Figs.9(a)-(c), together with the catastrophe theory, indicate that: 

- In general, also for a dynamically propagating crack, the positive (tensile) crack-

parallel stress reduces the stability of crack path while negative (compressive) crack-

parallel stress enhances the path directional stability; 

- The stability curve changes its characteristic shape when the crack speed passes c/cS ≈ 

0.45 (c/cR ≈ 0.5) and exceeds the limit to attain a stable bifurcation which allows for 

crack division; and 

- The increase of crack tip propagation speed reduces the stabilizing effect of the crack-

parallel stress: If a crack, for example, is under the slightly positive (tensile) crack-

parallel stress such as indicated by the broken arrow in Fig.8, then this crack is stable in 

the range c/cS < 0.2 (c/cR < 0.22), becomes unstable with possible surface roughening 

between 0.2 < c/cS < 0.45 (0.22 < c/cR < 0.5) and bifurcates when c/cS > 0.45 (c/cR > 

0.5). If a crack is under the compressive crack-parallel stress marked by the solid arrow 

in Fig.8, the crack propagates stably in the range c/cS < 0.6 (c/cR < 0.65) and then 

stably bifurcates c/cS > 0.6 (c/cR > 0.65). In both cases, a crack cannot propagate 

without changing its surface configuration if the tip speed exceeds a certain limit. It 

should also be noted that slight change in the tensile crack-parallel stress will affect the 

crack surface roughening and/or branching velocity considerably. 

The above results, in general, are in good agreement with the experimental as well as theoretical 

results summarized in the previous two chapters of this contribution. 
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 The situation where a small directional imperfection (m = KII/KI = 0.05) is superimposed 

onto the running Mode-I crack is depicted in Figs.9(d)-(f). The stability curve for a medium 

crack tip velocity [Fig.9(e)] shows, like the static one (Fig.5), that under the action of imperfect 

loading, a crack can stably propagate regardless of the sign and magnitude of the crack-parallel 

stress. Comparison of Figs.9(b) and (e) suggests that the superimposition of mode-II loading 

will enhance the crack path stability also for dynamic cases. Again, this result is consistent with 

the experimentally observed phenomena (Figs.3 and 4). In the high-velocity range [Figs.9(c), 

(f)], the outside branches of the fork-type stability curve represent stable crack paths, which 

eventually may lead to (a)symmetric branching patterns. Again, the stability of a crack may be 

controlled by the sign and magnitude of the crack-parallel stress, or α- (α*-) term. 

 Since different configurations of fracture test specimens are associated with differing α- 

(α*-) values, crack path directional stability is essentially dependent on type and size of the 

cracked component. Practice shows that DCB-type components are most sensitive to 

imperfections and show extreme unstable dynamic fracture behavior like off-centerline deviation 

and subsequent tearing-off of one arm of the specimen [11]. Figure 8 shows that under the 

action of tensile crack-parallel stress, which is expected in DCB-type components, the regions 

of stable, unstable crack propagation and bifurcation are located very close to each other, 

suggesting that slight change of α (α*) renders a totally different crack behavior. This is in good 

agreement with the practical observations described above. 

 

4. Conclusions 

Crack path directional stability has been considered based on the experimentally recorded 

photographs and the analytically obtained distributions of the maximum in-plane shear stress and 

the strain energy density in the vicinity of crack tips. The stability charts for Mode-I and mixed-
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mode cracks, which have been analytically obtained by employing the strain energy density 

fracture criterion in connection with the catastrophe theory, have allowed for detailed discussion 

of the dynamic behavior of cracks: stable propagation; unstable, surface roughening 

propagation; and/or crack bifurcation. It has been shown that the crack-parallel stress 

considerably affects the directional stability of crack paths and its slight difference may be able 

to change the crack surface roughening and/or branching velocity, especially when the crack-

parallel stress is tensile: the phenomena have been observed also practically in the DCB-type 

cracked components. It has also been pointed out that adding mode-II loading and/or decreasing 

crack tip propagation speed will enhance the dynamic crack path stability. Increasing Poisson’s 

ratio will slightly enhance the directional stability of a crack, and conditions of plane strain will 

render more stable crack extension than plane stress conditions. 
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Figure Legends 

 

Figure 1.  Geometrical configuration of a mixed-mode crack propagating dynamically. 

 

Figure 2.  Schematic view of (a) Double-Cantilever-Beam (DCB) specimen; and (b) Single-

Edge-Notched (SEN) specimen. DCB gives positive (tensile) crack-parallel stress while SEN 

renders negative (compressive) normal stress acting parallel to the crack surface. 

 

Figure 3.  Experimentally recorded and analytically generated dynamic isochromatic fringe 

patterns (contours of in-plane maximum shear stress) and strain energy density distributions 

around a moving crack tip (c/cS = 0.2) subjected to Mode-I (m = KII/KI = 0; left column) and 

mixed-mode (m = 0.1; right column) stress loading in a Double-Cantilever-Beam specimen      

(α = 1.0, ν = 0.25). 

 

Figure 4.  Isochromatic fringe patterns and strain energy density distributions around a 

dynamically propagating crack tip (c/cS = 0.2) under Mode-I (m = KII/KI = 0; left column) and 

mixed-mode (m = 0.1; right column) stress loading in a Single-Edge-Notched specimen           

(α = −1.0, ν = 0.25), obtained experimentally as well as analytically. 

 

Figure 5.  Stability chart (α* [= I2 Krnx πσ∞ ] versus θn) associated with the equi-strain-

energy-density line patterns for a static crack subjected to various combined mode stress 

conditions [ν = 0.25; plane strain; m = KII/KI = (a) 0, (b) 0.05, (c) 0.25; thick lines: stable, fine 

lines: unstable]. 



 

Figure 6.  Influence of the state of stress and varying Poisson’s ratio [ν = (a, d) 0, (b, e) 0.25, 

(c, f) 0.5] onto the stability chart (α* versus θn) associated with equi-strain-energy-density line 

patterns for a static crack subjected to Mode-I conditions of (a, b, c) plane strain and (d, e, f) 

plane stress; thick lines: stable, fine lines: unstable. 

 

Figure 7.  Perspective representation of α*−c/cS−θn relationship. (Mode-I propagating crack;     

ν = 0.25; plane strain). The increase of crack tip propagation speed reduces the stabilizing effect 

of the crack-parallel stress. 

 

Figure 8.  The projection of the curve of degenerate critical points on the α*, c/cS-plane (Mode-I 

stress loading; ν = 0.25; plane strain). 

 

Figure 9.  Dynamic stability chart (α* versus θn) associated with equi-strain-energy-density line 

patterns for a combined mode crack [m = KII/KI = (a, b, c) 0, (d, e, f) 0.05; ν = 0.25; plane 

strain; c/cS = (a, d) 0, (b, e) 0.4, (c, f) 0.6; thick lines: stable, fine lines: unstable]. 
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Figure 1.  Geometrical configuration of a mixed-mode crack propagating dynamically. 
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Figure 2.  Schematic view of (a) Double-Cantilever-Beam (DCB) specimen; and (b) Single-

Edge-Notched (SEN) specimen. A DCB specimen gives positive (tensile) crack-parallel stress 

while an SEN specimen renders negative (compressive) normal stress acting parallel to the crack 

surface. 
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Figure 3.  Experimentally recorded and analytically generated dynamic isochromatic fringe 
patterns (contours of in-plane maximum shear stress) and strain energy density distributions 
around a moving crack tip (c/cS = 0.2) subjected to Mode-I (m = KII/KI = 0; left column) and 
mixed-mode (m = 0.1; right column) stress loading in a Double-Cantilever-Beam specimen      
(α = 1.0, ν = 0.25). 
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Figure 4.  Isochromatic fringe patterns and strain energy density distributions around a 
dynamically propagating crack tip (c/cS = 0.2) under Mode-I (m = KII/KI = 0; left column) and 
mixed-mode (m = 0.1; right column) stress loading in a Single-Edge-Notched specimen           
(α = −1.0, ν = 0.25), obtained experimentally as well as analytically. 
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Figure 5.  Stability chart (α* [= I2 Krnx πσ∞ ] versus θn) associated with the equi-strain-

energy-density line patterns for a static crack subjected to various combined mode stress 
conditions [ν = 0.25; plane strain; m = KII/KI = (a) 0, (b) 0.05, (c) 0.25; thick lines: stable, fine 
lines: unstable]. 
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Figure 6.  Influence of the state of stress and varying Poisson’s ratio [ν = (a, d) 0, (b, e) 0.25, 
(c, f) 0.5] onto the stability chart (α* versus θn) associated with equi-strain-energy-density line 
patterns for a static crack subjected to Mode-I conditions of (a, b, c) plane strain and (d, e, f) 
plane stress; thick lines: stable, fine lines: unstable. 



 
 

 

 

 

 

 

 

 

 

Figure 7.  Perspective representation of α*−c/cS−θn relationship. (Mode-I propagating crack;     

ν = 0.25; plane strain). 
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Figure 8.  The projection of the curve of degenerate critical points on the α*, c/cS-plane (Mode-I 

stress loading; ν = 0.25; plane strain). The increase of crack tip propagation speed reduces the 

stabilizing effect of the crack-parallel stress. 
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Figure 9.  Dynamic stability chart (α* versus θn) associated with equi-strain-energy-density line 
patterns for a combined mode crack [m = KII/KI = (a, b, c) 0, (d, e, f) 0.05; ν = 0.25; plane 
strain; c/cS = (a, d) 0, (b, e) 0.4, (c, f) 0.6; thick lines: stable, fine lines: unstable]. 
 




